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The role of the light postulate in special relativity is reexamined. The existing theory of relativity without 

light shows that one can deduce Lorentz-like transformations with an undetermined invariant speed based on 

homogeneity of space and time, isotropy of space and the principle of relativity. However, since the 

transformations can be Lorentzian or Galilean, depending on the finiteness of the invariant speed, a further 

postulate is needed to determine the speed in order to establish a real connection between the theory and special 

relativity. In this paper, I argue that the discreteness of space-time, whose existence is strongly suggested by the 

combination of quantum theory and general relativity, may result in the existence of a maximum and invariant 

speed when combing with the principle of relativity, and thus can determine the finiteness of the speed in the 

theory. According to this analysis, the speed constant c in special relativity is not the actual speed of light, but the 

ratio between the minimum length and the shortest time of discrete space-time. This suggests a more complete 

theory of relativity without light, the theory of relativity in discrete space-time, which is based on the principle of 

relativity and the constancy of the minimum size of discrete space-time. 

 

1. Introduction 

Special relativity was originally based on two postulates: the principle of relativity and the 

constancy of the speed of light. But, as Einstein later admitted to some extent (Einstein 1935), it is 

an incoherent mixture (Stachel 1995); the first principle is universal in scope, while the second is 

only a particular property of light, which has obvious electrodynamical origins in Maxwell’s 

theory. In fact, there has been a lasting attempt that tries to drop the light postulate from special 

relativity, which can be traced back to Ignatowski (1910) (see also Torretti 1983; Brown 2005)1. It 

is found that based only on homogeneity of space and time, isotropy of space and the principle of 

relativity, one can deduce Lorentz-like transformations with an undetermined invariant speed. 

Unlike special relativity that needs to assume the constancy of the speed of light, an invariant 

speed naturally appears in the theory, which has been called relativity without light. This is a 

surprise indeed. 

Since the value of the invariant speed can be infinite or finite, the theory of relativity without 

light actually allows two possible transformations: Galilean and Lorentzian. An empirical element 

                                                        
1 A more detailed reference list in chronological order is: Ignatowski (1910, 1911a, 1911b); Frank and Rothe 
(1911, 1912); Pars (1921); Kaluza (1924); Lalan (1937); Dixon (1940); Weinstock (1965); Mitavalsky (1966); 
Terletskii (1968); Berzi and Gorini (1969); Gorini and Zecca (1970); Lee and Kalatos (1975); Lévy-Leblond 
(1976); Srivastava (1981); Mermin (1984); Schwartz (1984, 1985); Singh (1986); Sen (1994); Field (1997); 
Coleman (2003); Pal (2003); Sonego and Pin (2005); Gannett (2007); Silagadze (2007); Certik (2007); 
Feigenbaum (2008).  



 

 

is still needed to determine the invariant speed and further eliminate the Galilean transformations. 

This raises serious doubts about the connection between the theory and special relativity. Some 

authors insisted that the light postulate in special relativity is still needed to derive the Lorentz 

transformations (Pauli 1921; Resnick 1967; Miller 1981). Others doubted that the theory is indeed 

relativistic in nature (Brown 2005). However, it can be argued that the empirical element may not 

refer to any properties of light in an essential way (see, e.g. Lévy-Leblond 1976; Mermin 1984). 

Therefore, the existing theory of relativity without light is definitely an advance, but admittedly 

there is still a step away between it and the Lorentz transformations in special relativity; resorting 

to experience to determine its invariant speed is just a makeshift. The challenge for future work is 

two-fold. On the one hand, we need to further determine the invariant speed, not by experience but 

by some deeper postulates (e.g. postulates about space and time). If successful, this will establish a 

more complete theory of relativity without light, which can be taken as a further development of 

special relativity; On the other hand, we need to re-interpret the constant c in special relativity. It 

should be not (only) the speed of light. What, then, is its real meaning? These two problems are 

intimately connected as a matter of fact. The purpose of this paper is to try to solve them. 

The remainder of this paper is organized as follows. Section 2 gives a clear introduction of 

the theory of relativity without light. I raise the problem about how to determine the finiteness of 

the invariant speed in the theory by theoretical considerations. In Section 3, I propose a possible 

solution. As the existing theory of relativity without light implies, the existence of an invariant 

speed may result from the properties of space and time (e.g. homogeneity of space and time). 

Inspired by this result, I argue that the discreteness of space-time, whose existence is suggested by 

the combination of quantum theory and general relativity, may further account for the finiteness of 

the invariant speed. In discrete space-time, there exists a finite speed that is maximum and 

invariant in all inertial frames. This may also provide a reasonable interpretation of the constant c 

in special relativity; it is not the actual speed of light, but the ratio between the minimum length 

and the shortest time of discrete space-time. Section 4 further suggests a more complete theory of 

relativity without light, the theory of relativity in discrete space-time. The connection between the 

new suggestion and some existing theories, such as doubly special relativity, is also discussed in 

brief. 

2. Relativity without light 

There are many different deductions of the Lorentz-like transformations without resorting to 

the light postulate. Yet the assumptions they are based on are basically the same, namely 

homogeneity of space and time, isotropy of space and the principle of relativity. Here I will 

introduce a very clear and simple deduction (see also Pal 2003). 

Consider two inertial frames S  and S ′ , where S ′  moves with a speed v  relative to S  

and when 0=t  the origins of the two frames coincide. The space-time transformation equations 

in two-dimensional space-time can be written as follows:  

),,( vtxXx =′    (1) 

),,( vtxTt =′     (2) 

where tx ′′,  denote the space and time coordinates in the frame S ′ , and tx,  denote the space 



 

 

and time coordinates in the frame S . Now I will invoke the above assumptions to derive the 

space-time transformations. 

(1) Homogeneity of space and time  

The homogeneity of space requires that the length of a rod does not depend on its position in 

an inertial frame. Suppose there is a rod in the frame S , which ends are at positions 1x  and 2x  

( >2x 1x ). Due to the homogeneity of space, the length of the rod is the same when its ends are at 

positions xx Δ+1  and xx Δ+2 . Correspondingly, the length of the rod in the frame S ′  is also 

the same for these two situations. Then we have: 

),,(),,(),,(),,( 1212 vtxXvtxXvtxxXvtxxX −=Δ+−Δ+   (3) 

or 

),,(),,(),,(),,( 1122 vtxXvtxxXvtxXvtxxX −Δ+=−Δ+   (4) 

Dividing both sides by xΔ  and taking the limit 0→Δx , we get: 
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Since the positions 1x  and 2x  are arbitrary, the partial derivative must be constant. Therefore, 

the function ),,( vtxX  will be a linear function of x . In a similar way, ),,( vtxX  is also a 

linear function of t  due to the homogeneity of time, and the same for ),,( vtxT . In conclusion, 

the homogeneity of space and time requires that the space-time transformations are linear with 

respect to both space and time.  

Considering that the origins of the two frames S  and S ′  coincide when 0=t , we can 

write down the linear space-time transformations in a matrix notation: 
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where vvvv DCBA ,,,  are only functions of the relative velocity v . Furthermore, since the 

origin of S ′  moves at a speed v  relative to the origin of S , i.e., 0=′x  when vtx = , we 

also have the following relation:  

vv vAB −=    (7) 

(2) Isotropy of space 

The isotropy of space demands that the space-time transformations do not change when the 

x -axis is reversed, i.e., both x  and v  change sign, and so does x′ . Applying this limitation to 

Equation (6) we have:  



 

 

⎪⎪⎩
⎪⎪⎨
⎧

=
−=
−=
=

−
−
−
−

vv

vv

vv

vv

DD

CC

BB

AA

   (8) 

 

(3) Principle of relativity 

The principle of relativity requires that the inverse space-time transformations assume the 

same form as the original transformations. This means that the transformations from S ′  to S  

assume the same functional forms as the transformations from S  to S ′ . Moreover, the 

combination of the principle of relativity with isotropy of space further implies reciprocity (Berzi 

and Gorini 1969; Budden 1997; Torretti 1983), namely that the speed of S ′  relative to S  is the 

negative of the speed of S  relative to S ′ . Thus we have: 
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Combining the conditions (8) and (9) we can get: 

vv AD =    (10) 

v

v
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12 −=    (11) 

Then considering Equation (7) the space-time transformations can be formulated in terms of only 

one unknown function vA , namely 
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or 
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Now consider a third frame S ′′  which moves with a speed u  relative to S ′ , and we 

have:  
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The principle of relativity demands that this transformation assumes the same form as the 

transformation from S  to S ′ , and thus the two diagonal elements of the matrix also satisfy 

Equation (10), namely they are equal. Thus we have: 
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Since u  and v  are arbitrary, this equation means that its both sides are constants. Denoting this 

constant by K  and considering the condition 1=vA  when 0=v , we have: 

21

1

Kv
Av −=    (16) 

Therefore, we deduce the final space-time transformations in terms of the homogeneity of space 

and time, isotropy of space and the principle of relativity, namely: 
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The velocity addition law can be further deduced. Suppose the speed of the frame S ′′  relative to 

S ′  is w . Then using Equation (16) and Equation (13), in which the first diagonal element of the 

matrix is wA  by definition, we can directly deduce the velocity addition law, namely: 

Kuv

vu
w +

+=
1

   (18) 

It can be seen that 2/1−K  is an invariant speed, independent of any inertial frame. The possible 

values of K  can be determined as follows. Equation (16) indicates 0>vA  for any v . 

Moreover, the first diagonal element of the matrix in Equation (13) further demands 1≥vA , for 

if 1<vA  then for some values of u  and v  (e.g. vu >> ) we can get 0<wA . As thus, we 

have 0≥K  according to Equation (16). 

 Two points need to be discussed about the above deduction. First of all, the idea that the 



 

 

homogeneity of space and time requires space-time transformations are linear can be traced back 

to Einstein, and was later developed by more authors (see, e.g. Terletskii 1968; Lévy-Leblond 

1976; Berzi and Gorini 1969). However, it can be argued that the principle of relativity, together 

with the law of inertia, can also lead to the linearity of space-time transformations (Fock 1969; 

Torretti 1983; Brown 2005). Thus the homogeneity of space and time may be dropped from the 

assumptions needed for deduce a theory of relativity without light. Secondly, isotropy of space 

plays a pivotal role in the deduction. Since isotropy of space and its resulting condition of 

reciprocity hold only for the standard convention of simultaneity, we only deduce a theory of 

relativity without light consistent with the standard convention. If simultaneity is really a 

convention (for a different view see Malament 1977), then it seems that in order to have a theory 

of relativity without light we should deduce the general Edwards-Winnie transformations for any 

convention (Edwards 1963; Winnie 1970), not only the Lorentz-like transformations. But this 

seems to be an impossible task, as symmetries such as isotropy of space and reciprocity play an 

indispensable role in the deduction.  

 Now I will analyze the possible implications of the above theory of relativity without light. 

When 0=K  we obtain the Galileo transformations, while when 0>K  we obtain the Lorentz 

transformations. Thus the theory is the most general one consistent with the principle of relativity, 

which can accommodate both Galilean and Einsteinian relativity. But in this meaning it is not yet 

relativistic in nature, as the value of K  or an invariant speed needs to be further determined in 

order to establish its connection with Einstein’s relativity. Note that this does not mean we need to 

determine the concrete value of K  such as 2/1 cK = . What we need to determine is only 

0≠K , as K  and c  are quantities with dimension and their values can assume the unit of 

number 1 in principle. Certainly we can resort to experience, also without light, to eliminate the 

possibility of 0=K , and we have more today indeed. This, however, is unsatisfactory in several 

aspects. First of all, we have not deduced a theory of relativity without light consistent with 

Einstein’s relativity in this way. There is still one step left, which may be more important. This 

obviously departs from the initial aim of dropping the light postulate from special relativity. We 

hope that, by dropping the light postulate, we can still deduce a theory consistent with special 

relativity. Next, although we can determine the value of K  by experience, there is still one deep 

mystery unexplained. It is why there exists an invariant and maximum speed, independent of any 

inertial frame. For Galilean relativity there is no such mystery, but for Einstein’s relativity there is 

one. Lastly, the determination of K  by theoretical considerations may lead us to a deeper 

understanding of space-time and relativity, and will probably bring a further development of 

special relativity. The existing theory of relativity without light is only a first step towards this 

direction. 

 To sum up, we have not had a theory of relativity without light consistent with Einstein’s 

relativity yet. Only after answering why there is an invariant and maximum speed and thus 

determining the finiteness of K  by a deeper postulate can we claim we have. I will provide a 

possible answer in the next section. 

3. Discreteness of space-time and the invariance of a finite maximum speed 

In special relativity, the speed of light in vacuum, denoted by c, is invariant in all inertial 



 

 

frames. Moreover, it is the maximum speed with which all objects can move2. This postulate is not 

a result of logical analysis but a direct representation of experience. The theory itself cannot 

answer why the speed of light is invariant and maximum. Now the appearance of the theory of 

relativity without light further urges us to understand the meaning of c in special relativity. The 

theory suggests that c is not (merely) the speed of light, but a universal constant of nature, an 

invariant speed. Furthermore, it also shows that the existence of an invariant speed partly results 

from the properties of space and time, e.g. homogeneity of space and time and isotropy of space. 

This makes us be closer to the real meaning of c. However, the theory cannot yet tell us the origin 

of c. In fact, it is still incomplete and cannot even establish a real connection between its invariant 

speed with c. Anyway, we need to explain exactly why there is a maximum and invariant speed.  

Since speed is essentially the ratio of space interval and time interval, it is a natural conjecture 

that the existence of a maximum and invariant speed may result from some undiscovered property 

of space and time, as the existing theory of relativity without light has implied. In the following, I 

will argue that the property is probably the discreteness of space-time.  

Consider the continuous motion of an object in discrete space-time, in which there is a 

minimum length, denoted by UL , and a minimum time interval, denoted by UT . If the object 

moves with a speed larger than UU TL / , then it will move more than a minimum length UL  

during a minimum time interval UT , and thus moving UL  will correspond to a time interval 

shorter than UT  during the motion. Since UT  is the minimum time interval in discrete 

space-time, which means that the duration of any change cannot be shorter than UT , the motion 

with a speed larger than UU TL /  will be prohibited. As thus, there is a maximum speed in 

discrete space-time, which equals to the ratio of minimum length and minimum time interval.  

There are many clues of the discreteness of space-time in modern physics. For instance, the 

appearance of infinity in quantum field theory and singularity in general relativity may suggest 

that space and time is not continuous but discrete. Besides, it has been widely argued that the 

proper combination of quantum theory and general relativity, two firm results of which are the 

formula of black hole entropy and the generalized uncertainty principle (see, e.g. Salecker and 

Wigner 1958; Garay 1995; Adler and Santiago 1999; Smolin 2001), may inevitably result in the 

discreteness of space-time. Moreover, the argument suggests that in the discrete space-time, the 

minimum time interval is ≡UT 2 PT  and the minimum length is ≡UL 2 PL , where 

PT = 2/1
5

)(
c

Gh
, PL = 2/1

3
)(

c

Gh
 is respectively the Planck time and the Planck length. For example, 

the minimum length can be derived from the following generalized uncertainty principle (GUP) 

(Garay 1995; Adler and Santiago 1999):  

                                                        
2 In this paper we only consider the motion of the mass center of an object or a particle, which can be described by 
a material point. For simplicity, we always say the motion of an object or a particle.  
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It can be seen that the ratio of minimum length and minimum time interval is the speed of light c. 

Therefore, according to the above argument, c will be the maximum speed in discrete space-time.  

Now I will further argue that the maximum speed c is invariant in all inertial frames in 

discrete space-time. According to the principle of relativity, the discrete character of space and 

time, in particular the minimum time interval UT  and the minimum length UL , should be the 

same in all inertial frames. If the minimum sizes of space and time are different in different 

inertial frames, then there will exist a preferred Lorentz frame. This contradicts the principle of 

relativity. Thus, UU TLc /≡  will be the maximum speed in any inertial frame (see also Rindler 

1977; 1991). Next, I analyze the transformation of c in different inertial frames. Suppose an object 

moves with the maximum speed c in an inertial frame S . Since c is the maximum speed in any 

inertial frame, the speed of the object can only be equal to or smaller than c in another inertial 

frame S ′ . If its speed in the frame S ′ , denoted by c′ , is smaller than c, then due to the 

continuity of the velocity transformation function, there must exist a speed larger than c′  and a 

speed smaller than c′  that correspond to the same speed in the frame S . This means that when 

the object moves with a certain speed in the frame S , its speed in the frame S ′  will have two 

possible values. This is impossible. Therefore, if an object moves with the maximum speed c in 

one inertial frame, it will also move with the same speed c in other inertial frames. In short, the 

maximum speed c is invariant in all inertial frames.  

So far so good. However, it seems that there is a problem in the above argument that the 

discreteness of space-time requires the existence of a maximum speed. In fact, if motion is 

essentially continuous, we can similarly argue that the motion with a speed smaller than the 

maximum speed will also be prohibited in discrete space-time. Suppose an object moves with a 

speed smaller than the maximum speed UU TL / . Then it will move less than UL  during UT . 

But UL  is the minimum length in discrete space-time, thus this is impossible. Therefore, objects 

can only move with the maximum speed in discrete space-time if motion is essentially continuous. 

This result obviously contradicts experience. An object can move with a speed smaller than the 

maximum speed c in reality3. Certainly, this contradiction can be used to favor continuous motion 

and disfavor discrete space-time. However, on the one hand, it is generally accepted that the 

assumption of continuous motion is inconsistent with quantum theory, the most fundamental 

theory of nature (for a different view see, e.g. Bohm 1952). Moreover, the assumption also has 

serious drawbacks within classical mechanics (see, e.g. Arntzenius 2000; Gao 2006b, 2008); On 

the other hand, the discreteness of space-time has strong support from the combination of quantum 

theory and general relativity. Although a full description of quantum gravity is not yet available, 

                                                        
3 It can be conceived that a free object moves with c during some time, and stays still during other time. Then its 
average speed can be smaller than c, and thus the motion can be consistent with the existing experience. However, 
the speed change of the free object during such motion can hardly be explained. In addition, this motion will 
contain some kind of unnatural randomness (e.g. during each time the speed of the free object will assume c or 0 in 
a random way), which has no logical basis. 



 

 

the discreteness of space-time is a general feature that most promising candidates for such a 

unified theory (e.g. string theory, loop quantum gravity, and quantum geometry etc) have (see, e.g. 

Smolin 2001). Therefore, the above contradiction may actually indicate that the discreteness of 

space-time provides a further argument against the assumption of continuous motion.  

If the actual motion is essentially discontinuous and continuous motion is merely its 

approximate average display4, then the apparent continuous motion with a speed smaller than the 

maximum speed UU TLc /≡  will not be prohibited in discrete space-time. The reason is that an 

object undergoing such motion actually does not move less than UL  during UT , as its motion is 

discontinuous and it can move a distance larger than UL  during UT  in a discontinuous way. 

Moreover, since the direction of each discontinuous movement may be forward and backward, the 

average velocity of the object can still be smaller than the maximum speed. However, the average 

velocity of the object cannot be larger than the maximum speed c , or else we can detect a time 

interval shorter than UT  by measuring the average moving distance of the object. This is 

prohibited in discrete space-time. Thus, although the motion of objects is discontinuous, the 

apparent continuous motion with a speed larger than c  is also prohibited, and there is still a 

maximum speed c  in discrete space-time5.  

Since time interval and space interval are primary physical quantities, while speed, which is 

defined as the ratio of space interval and time interval, is a secondary physical quantity, it is 

understandable that the properties of the characteristic speed c can be further explained by the 

properties of space and time. As I have argued above, the maximum and constancy of c probably 

results from the discreteness of space-time. By comparison, if space and time are continuous, then 

no characteristic space and time sizes exist, and thus it seems unnatural that there exists a 

characteristic speed. On the other hand, if my argument is right, then the existence of a maximum 

and invariant speed c will be a firm (and maybe the first) experimental evidence of discrete 

space-time, in which the ratio of the minimum length UL  and the minimum time interval UT  is 

c.  

In conclusion, the discreteness of space-time may account for the existence of an invariant 

and maximum speed. Thus it may be the deeper postulate that determines the finiteness of the 

invariant speed in the theory of relativity without light. In this way, the discreteness of space-time 

may not only reveal the meaning of c, but also provide a deeper logical foundation for special 

relativity.  

                                                        
4 If discontinuous motion happens in extremely short space and time intervals, a large number of minute 
discontinuous motions can generate the average display of continuous motion. For a detail analysis of 
discontinuous motion, see Gao (2006a, 2006b, 2008). 
5 For a microscopic particle moving in vacuum, its average velocity can be defined as the group speed of its wave 
function. Note that the group speed of photons can be larger than c in some special media. This does not contradict 
the discreteness of space-time. What the discrete space-time really limits is the speed of any (apparently 
continuous) causal influence, which cannot be larger than c. The speed of discontinuous causal influence such as 
quantum nonlocality may be larger than c (see, e.g. Gao 2004). 



 

 

4. Further discussions 

If space and time are indeed discrete, then the theory of relativity will be defined in discrete 

space-time. Relativity in discrete space-time is based on two postulates: (1) the principle of 

relativity; (2) the constancy of the minimum size of discrete space-time, which states that the 

minimum time interval UT  and the minimum length UL  are invariant in all inertial frames. The 

theory can be considered as a more complete theory of relativity without light. According to the 

above analysis, special relativity can be derived from the theory of relativity in discrete space-time, 

as the constancy of the minimum size of discrete space-time can lead to the constancy of the speed 

of light UU TLc /≡ . In this meaning, Galileo’s relativity is a theory of relativity in continuous 

space and time, while Einstein’s relativity is a theory of relativity in discrete space-time.  

It should be noted that some variants of relativity in discrete space-time has already appeared 

in the research of quantum gravity (see Hagar 2009 for a general discussion). For example, doubly 

special relativity assumes two invariant scales, the speed of light c and a minimum length そ 
(Amelino-Camelia 2000, 2004; Kowalski-Glikman 2005), while triply special relativity assumes 

three invariant scales, the speed of light c, a mass せ and a length R (Kowalski-Glikman and 

Smolin 2004). In these theories, the classical Minkowski space-time is replaced by a quantum 

space-time, such as せ-Minkowski noncommutative space-time etc. Although these theories still 

have problems (e.g. energy-momentum conservation problem and composition problem) due to 

their extreme nonlinearity (Amelino-Camelia 2004), they may be some in-between points along 

the road to a complete theory of quantum gravity (Amelino-Camelia and Smolin 2009). Moreover, 

if the constancy of the speed of light is really a result of the discreteness of space-time, then it 

should not be an independent assumption, while a minimum time interval, together with a 

minimum length, should be the only two invariant scales in a fundamental theory. 
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