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The role of the light postulate in special relativity is reexamined. The existing theory of relativity without 

light shows that one can deduce Lorentz-like transformations with an undetermined invariant speed, based on 

homogeneity of space and time, isotropy of space and the principle of relativity. However, since the 

transformations can be Lorentzian or Galilean, depending on the finiteness of the invariant speed, a further 

postulate is still needed to determine the speed in order to establish a real connection between the theory and 

special relativity. It is argued that the discreteness of space and time, which existence is implied by modern 

physics, may result in the existence of a maximum and invariant speed when combing with the principle of 

relativity, and thus can determine the finiteness of the speed in the theory. This suggests a more complete theory of 

relativity without light, the theory of relativity in discrete space and time, which is based on the principle of 

relativity and the constancy of the minimum size of discrete spacetime. According to the new argument, the speed 

constant c in special relativity is not the actual speed of light, but the ratio between the minimum length and the 

shortest time of discrete spacetime. The connection of this suggestion with existing theories, such as doubly special 

relativity, is briefly discussed.  

 

1. Introduction 

It is well known that c is the speed of light in vacuum, which enters into modern physics 
through one of its foundation stones, the special theory of relativity. Special relativity was 
originally based on two postulates: the principle of relativity and the constancy of the speed of 
light. But, as Einstein later admitted to some extent (Einstein 1935), it is an incoherent mixture 
(Stachel 1995); the first principle is universal in scope, while the second is only a particular 
property of light, which has obvious electrodynamical origins in Maxwell’s theory. In fact, there 
has been a lasting attempt that tries to drop the light postulate from special relativity, which can be 
traced back to Ignatowski (1910) (see also Torretti 1983; Brown 2005)1. It is found that, based 
only on homogeneity of space and time, isotropy of space and the principle of relativity, one can 
deduce Lorentz-like transformations with an undetermined invariant speed. Unlike special 
relativity that needs to assume the constancy of the speed of light, an invariant speed naturally 
appears in the theory, which is usually called relativity without light. This is a surprise indeed.  

Since the value of the invariant speed can be infinite or finite, the theory of relativity without 
light actually allows two possible transformations: Galilean and Lorentzian. An empirical element 

                                                        
1 The more detailed references in chronological order are Ignatowski (1910, 1911a, 1911b); Frank and Rothe 
(1911, 1912); Pars (1921); Kaluza (1924); Lalan (1937); Dixon (1940); Weinstock (1965); Mitavalsky (1966); 
Terletskii (1968); Berzi and Gorini (1969); Gorini and Zecca (1970); Lee and Kalatos (1975); Lévy-Leblond 
(1976); Srivastava (1981); Mermin (1984); Schwartz (1984, 1985); Singh (1986); Sen (1994); Field (1997); 
Coleman (2003); Pal (2003); Sonego and Pin (2005); Gannett (2007); Silagadze (2007); Certik (2007); 
Feigenbaum (2008).  



is still needed to determine the invariant speed and further eliminate the Galilean transformations. 
This raises serious doubts about the connection between the theory and special relativity. Some 
authors insisted that the light postulate in special relativity is still needed to derive the Lorentz 
transformations (Pauli 1921; Resnick 1967; Miller 1981). Others doubted that the theory is indeed 
relativistic in nature (Brown 2005). However, it can be argued that the empirical element may not 
refer to any properties of light in an essential way (see, e.g. Lévy-Leblond 1976; Mermin 1984). 
Thus, the existing theory of relativity without light is definitely an advance, but admittedly there is 
still a step away between it and the Lorentz transformations in special relativity; resorting to 
experience to determine its invariant speed is just a makeshift. The challenge for future work is 
two-fold. On the one hand, we need to further determine the invariant speed, not by experience but 
by some deeper postulates (e.g. postulates about space and time). If successful, this will establish a 
more complete theory of relativity without light, which can be taken as a further development of 
special relativity; On the other hand, we need to re-explain the constant c in special relativity. It 
should be not (only) the speed of light. What is its real meaning then? These two problems are 
intimately connected as a matter of fact. The purpose of this paper is to solve them.  

The remainder of this paper is organized as follows. Section 2 gives a clear introduction of 
the theory of relativity without light. I raise the problem about how to determine the finiteness of 
its invariant speed by theory. In Section 3, I propose a radical solution. As the existing theory 
implies, the existence of an invariant speed may result from the properties of space and time (e.g. 
homogeneity of space and time). Inspired by this result, I argue that the discreteness of space and 
time, which existence is implied by modern physics, may further account for the finiteness of the 
invariant speed. In discrete space and time, there exists a finite speed that is maximum and 
invariant in all inertial frames. This may also provide a reasonable explanation of the constant c in 
special relativity; it is not the actual speed of light, but the ratio between the minimum length and 
the shortest time of discrete space and time. Section 4 further discusses this argument, which 
suggests a more complete theory of relativity without light, the theory of relativity in discrete 
spacetime. The connection between the new suggestion and some existing theories, such as doubly 
special relativity, is discussed in brief.  

2. Relativity without light 

There are many different deductions of the Lorentz-like transformations without resorting to 
the light postulate. But the assumptions they are based on are basically the same, namely 
homogeneity of space and time, isotropy of space and the principle of relativity. Here I will 
introduce a very clear and simple deduction (see also Pal 2003). 

Consider two inertial frames S  and S ′ , where S ′  moves with a speed v  relative to S  
and when 0=t  the origins of the two frames coincide. The spacetime transformation equations 
in two-dimensional spacetime can be written as follows:  

),,( vtxXx =′    (1) 

),,( vtxTt =′     (2) 

where tx ′′,  denote the space and time coordinates in the frame S ′ , and tx,  denote the space 



and time coordinates in the frame S . Now I will invoke the above assumptions to derive the 
spacetime transformations. 

(1) Homogeneity of space and time  
The homogeneity of space requires that the length of a rod does not depend on its position in 

an inertial frame. Suppose there is a rod in the frame S , which ends are at positions 1x  and 2x  

( >2x 1x ). Due to the homogeneity of space, the length of the rod is the same when its ends are at 

positions xx Δ+1  and xx Δ+2 . Correspondingly, the length of the rod in the frame S ′  is also 

the same for these two situations. Then we have: 

),,(),,(),,(),,( 1212 vtxXvtxXvtxxXvtxxX −=Δ+−Δ+   (3) 

or 

),,(),,(),,(),,( 1122 vtxXvtxxXvtxXvtxxX −Δ+=−Δ+   (4) 

Dividing both sides by xΔ  and taking the limit 0→Δx , we get: 
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Since the positions 1x  and 2x  are arbitrary, the partial derivative must be constant. Therefore, 

the function ),,( vtxX  will be a linear function of x . In a similar way, ),,( vtxX  is also a 

linear function of t  due to the homogeneity of time, and the same for ),,( vtxT . In conclusion, 

the homogeneity of space and time requires that the spacetime transformations are linear with 
respect to both space and time.  

Considering that the origins of the two frames S  and S ′  coincide when 0=t , we can 
write down the linear spacetime transformations in a matrix notation: 
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where vvvv DCBA ,,,  are only functions of the relative velocity v . Furthermore, since the 

origin of S ′  moves at a speed v  relative to the origin of S , i.e., 0=′x  when vtx = , we 
also have the following relation:  

vv vAB −=    (7) 

(2) Isotropy of space 
The isotropy of space demands that the spacetime transformations do not change when the 

x -axis is reversed, i.e., both x  and v  change sign, and so does x′ . Applying this limitation to 
Equation (6) we have:  
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(3) Principle of relativity 
The principle of relativity requires that the inverse spacetime transformations assume the 

same form as the original transformations. This means that the transformations from S ′  to S  
assume the same functional forms as the transformations from S  to S ′ . Moreover, the 
combination of the principle of relativity with isotropy of space further implies reciprocity (Berzi 
and Gorini 1969; Budden 1997; Torretti 1983), namely that the speed of S ′  relative to S  is the 
negative of the speed of S  relative to S ′ . Thus we have: 
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Combining the conditions (8) and (9) we can get: 

vv AD =    (10) 

v

v
v B

AC 12 −
=    (11) 

Then considering Equation (7) the spacetime transformations can be formulated in terms of only 

one unknown function vA , namely 
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or 
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Now consider a third frame S ′′  which moves with a speed u  relative to S ′ , and we 
have:  
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The principle of relativity demands that this transformation assumes the same form as the 
transformation from S  to S ′ , and thus the two diagonal elements of the matrix also satisfy 
Equation (10), namely they are equal. Thus we have: 
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Since u  and v  are arbitrary, this equation means that its both sides are constants. Denoting this 

constant by K  and considering the condition 1=vA  when 0=v , we have: 

21
1
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Therefore, we deduce the final spacetime transformations in terms of the homogeneity of space 
and time, isotropy of space and the principle of relativity, namely: 
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The velocity addition law can be further deduced. Suppose the speed of the frame S ′′  relative to 
S ′  is w . Then using Equation (16) and Equation (13), in which the first diagonal element of the 

matrix is wA  by definition, we can directly deduce the velocity addition law, namely: 

Kuv
vuw

+
+

=
1

   (18) 

It can be seen that 2/1−K  is an invariant speed, independent of any inertial frame. The possible 

values of K  can be determined as follows. Equation (16) indicates 0>vA  for any v . 

Moreover, the first diagonal element of the matrix in Equation (13) further demands 1≥vA , for 

if 1<vA  then for some values of u  and v  (e.g. vu >> ) we can get 0<wA . As thus, we 

have 0≥K  according to Equation (16).  
 Two comments need to be given about the above deduction before we analyze its 



implications. First, the idea that the homogeneity of space and time requires spacetime 
transformations are linear can be traced back to Einstein, and was later developed by more authors 
(see, e.g. Terletskii 1968; Lévy-Leblond 1976; Berzi and Gorini 1969). However, it can be argued 
that the principle of relativity, together with the law of inertia, can also lead to the linearity of 
spacetime transformations (Fock 1969; Torretti 1983; Brown 2005). Thus the homogeneity of 
space and time may be dropped from the assumptions needed for deduce a theory of relativity 
without light. Second, isotropy of space plays a pivotal role in the deduction. Since isotropy of 
space and its resulting condition of reciprocity hold only for the standard convention of 
simultaneity, we only deduce a theory of relativity without light consistent with the standard 
convention. If simultaneity is really a convention (for a different view see Malament 1977), then it 
seems that we should deduce the general Edwards-Winnie transformations for any convention 
(Edwards 1963; Winnie 1970), not only the Lorentz-like transformations, in order to have a theory 
of relativity without light. But this might be an impossible task, as symmetries such as isotropy of 
space and reciprocity play an indispensable role in the deduction.  
 Now I will analyze the possible implications of the above theory of relativity without light. 
When 0=K  we obtain the Galileo transformations, while when 0>K  we obtain the Lorentz 
transformations. Thus the theory is the most general one consistent with the principle of relativity, 
which can accommodate both Galilean and Einsteinian relativity. But in this meaning it is not yet 
relativistic in nature, as the value of K  or an invariant speed needs to be further determined in 
order to establish its connection with Einstein’s relativity. Note that this does not mean we need to 

determine the concrete value of K  such as 2/1 cK = . What we need to determine is only 

0≠K , as K  and c  are quantities with dimension and their values can assume the unit of 
number 1 in principle. Certainly we can resort to experience, also without light, to eliminate the 
possibility of 0=K , and we have more today indeed. This, however, is unsatisfactory in several 
aspects. First of all, we have not deduced a theory of relativity without light consistent with 
Einstein’s relativity in this way. There is still one step left, maybe more pivotal. This obviously 
departs from the initial aim of dropping the light postulate from special relativity. We hope that, by 
dropping the light postulate, we can still deduce a theory consistent with special relativity. Next, 
although we can determine the value of K  by experience, there is still one deep mystery 
unexplained. It is why there exists an invariant and maximum speed, independent of any inertial 
frame. For Galilean relativity, there is no such mystery, but for Einstein’s relativity, there is one. 
Lastly, the determination of K  by theory may lead us to a deeper understanding of spacetime 
and relativity, and will probably bring a further development of special relativity. The existing 
theory of relativity without light is only a first step towards this direction.  
 To sum up, we have not had a theory of relativity without light consistent with Einstein’s 
relativity yet. Only after answering why there is an invariant and maximum speed and thus 
determining the finiteness of K  by a deeper postulate can we claim we have. I will provide a 
possible answer in the next section.  

3. Discreteness of spacetime may imply the invariance of a finite maximum speed 

In special relativity, the speed of light in vacuum, denoted by c, is invariant in all inertial 



frames. Moreover, it is the maximum speed with which all objects can move2. This postulate is not 
a result of logical analysis, but a direct representation of experience. The theory itself cannot 
answer why the speed of light is invariant and maximum. Now the appearance of a theory of 
relativity without light further urges us to understand the meaning of c in special relativity. The 
theory implies that c is not (merely) the speed of light, but a universal constant of nature, an 
invariant speed. Furthermore, it also shows that the existence of an invariant speed partly results 
from the properties of space and time, e.g. homogeneity of space and time and isotropy of space. 
This makes us be closer to the real meaning of c. However, the theory can not yet tell us the origin 
of c. In fact, it is still incomplete and cannot even establish a real connection between its invariant 
speed with c. Anyway, we need to explain exactly why there is a maximum and invariant speed.  

Since speed is essentially the ratio of space interval and time interval, it is a natural conjecture 
that the existence of a maximum and invariant speed may result from some undiscovered property 
of space and time, as the existing theory of relativity without light has implied. In the following, I 
will argue that the property is probably the discreteness of space and time.  

Consider the continuous motion of an object in discrete space and time, in which there is a 

minimum length, denoted by UL , and a minimum time interval, denoted by UT . If the object 

moves with a speed larger than UU TL / , then it will move more than a minimum length UL  

during a minimum time interval UT , and thus moving UL  will correspond to a time interval 

shorter than UT  during the motion. Since UT  is the minimum time interval in discrete space 

and time, which means that the duration of any change cannot be shorter than UT , the motion 

with a speed larger than UU TL /  will be prohibited. As thus, there is a maximum speed in 

discrete space and time, which equals to the ratio of minimum length and minimum time interval.  
There are many clues of the discreteness of space and time in modern physics. For instance, 

the appearance of infinity in quantum field theory and singularity in general relativity may have 
suggested that space and time is not continuous but discrete. Besides, it has been widely argued 
that the proper combination of quantum theory and general relativity, two results of which are the 
formula of black hole entropy and the generalized uncertainty principle (see, e.g. Salecker and 
Wigner 1958; Garay 1995; Adler and Santiago 1999; Smolin 2001), may result in the discreteness 
of space and time. Moreover, the argument implies that in the discrete space and time, the 

minimum time interval is ≈UT PT  and the minimum length is ≈UL PL , where PT = 2/1
5 )(

c
Gh

, 

PL = 2/1
3 )(

c
Gh

 is respectively the Planck time and the Planck length, and the ratio of minimum 

length and minimum time interval is the speed of light c. For example, the minimum length can be 
derived from the following generalized uncertainty principle (GUP) (see Garay 1995 for a 
review):  

                                                        
2 In this paper we only consider the motion of the mass center of an object or a particle, which can be described by 
a material point. For simplicity, we always say the motion of an object or a particle.  
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Therefore, according to the above argument, c will be the maximum speed in discrete space and 
time.  

Now I will further argue that the maximum speed c is invariant in all inertial frames in 
discrete space and time. According to the principle of relativity, the discrete character of space and 

time, in particular the minimum time interval UT  and the minimum length UL , should be the 

same in all inertial frames. If the minimum sizes of space and time are different in different 
inertial frames, then there will exist a preferred Lorentz frame. This contradicts the principle of 

relativity. Thus, UU TLc /≡  will be the maximum speed in any inertial frame (see also Rindler 

1977; 1991). Next, I analyze the transformation of c in different inertial frames. Suppose an object 
moves with the maximum speed c in an inertial frame S . Since c is the maximum speed in any 
inertial frame, the speed of the object can only be equal to or smaller than c in another inertial 
frame S ′ . If its speed in the frame S ′ , denoted by c′ , is smaller than c, then due to the 
continuity of the velocity transformation function, there must exist a speed larger than c′  and a 
speed smaller than c′  that correspond to the same speed in the frame S . This means that when 
the object moves with a certain speed in the frame S , its speed in the frame S ′  will have two 
possible values. This is impossible. Therefore, if an object moves with the maximum speed c in 
one inertial frame, it will also move with the same speed c in other inertial frames. In short, the 
maximum speed c is invariant in all inertial frames.  

So far so good. However, it seems that there is a problem in the above argument that the 
discreteness of space and time requires the existence of a maximum speed. In fact, if motion is 
essentially continuous, we can similarly argue that the motion with a speed smaller than the 
maximum speed will also be prohibited in discrete space and time. Suppose an object moves with 

a speed smaller than the maximum speed UU TL / . Then it will move less than UL  during UT . 

But UL  is the minimum length in discrete space and time, thus this is impossible. Therefore, 

objects can only move with the maximum speed in discrete space and time if motion is essentially 
continuous. This result obviously contradicts experience. An object can move with a speed smaller 
than the maximum speed c in reality3. Certainly, this contradiction can be used to favor continuous 
motion and disfavor discrete space and time. However, on the one hand, it is generally accepted 
that the assumption of continuous motion is inconsistent with quantum theory, the most 
fundamental theory of nature (for a different view see, e.g. Bohm 1952). Moreover, the 
assumption also has serious drawbacks within classical mechanics (see, e.g. Arntzenius 2000); On 
the other hand, the discreteness of space and time has strong support from the combination of 
quantum theory and general relativity. Although a full description of quantum gravity is not yet 

                                                        
3 It can be conceived that a free object moves with c during some time, and stays still during other time. Then its 
average speed can be smaller than c, and thus the motion can be consistent with the existing experience. However, 
the speed change of the free object during such motion can hardly be explained. In addition, this motion will 
contain some kind of unnatural randomness (e.g. during each time the speed of the free object will assume c or 0 in 
a random way), which has no logical basis. 



available, the discreteness of space and time is a general feature that most promising candidates 
for such a unified theory (e.g. string theory, loop quantum gravity, and quantum geometry etc) 
have (see, e.g. Smolin 2001). Therefore, the above contradiction may actually indicate that the 
discreteness of space and time provides a further argument against the assumption of continuous 
motion.  

If the actual motion is essentially discontinuous and continuous motion is merely its 
approximate average display4, then the apparent continuous motion with a speed smaller than the 

maximum speed UU TLc /≡  will not be prohibited in discrete space and time. The reason is that 

an object undergoing such motion actually does not move less than UL  during UT , as its motion 

is discontinuous and it can move a distance larger than UL  during UT  in a discontinuous way. 

Moreover, since the direction of each discontinuous movement may be forward and backward, the 
average velocity of the object can still be smaller than the maximum speed. However, the average 
velocity of the object cannot be larger than the maximum speed c , or else we can detect a time 

interval shorter than UT  by measuring the average moving distance of the object. This is 

prohibited in discrete space and time. Thus, although the motion of objects is discontinuous, the 
apparent continuous motion with a speed larger than c  is also prohibited, and there is still a 
maximum speed c  in discrete space and time5.  

Since time interval and space interval are primary physical quantities, while speed, which is 
defined as the ratio of space interval and time interval, is a secondary physical quantity, it is 
understandable that the properties of the characteristic speed c can be further explained by the 
properties of space and time. As I have argued above, the maximum and constancy of c probably 
results from the discreteness of space and time. By comparison, if space and time are continuous, 
then no characteristic space and time sizes exist, and thus it seems unnatural that there exists a 
characteristic speed. On the other hand, if my argument is right, then the existence of a maximum 
and invariant speed c will be a firm (and maybe the first) experimental evidence of discrete space 

and time, in which the ratio of the minimum length UL  and the minimum time interval UT  is c.  

In conclusion, the discreteness of space and time may account for the existence of an 
invariant and maximum speed. Thus it may be the deeper postulate that determines the finiteness 
of the invariant speed in the theory of relativity without light. In this way, the discreteness of 
space and time may not only reveal the meaning of c, but also provide a deeper logical foundation 
for special relativity.  

                                                        
4 If discontinuous motion happens in extremely short space and time intervals, a large number of minute 
discontinuous motions can generate the average display of continuous motion.  
5 For a microscopic particle moving in vacuum, its average velocity can be defined as the group speed of its wave 
function. Note that the group speed of photons can be larger than c in some special media. This does not contradict 
the discreteness of space and time. What the discrete spacetime really limits is the speed of any (apparently 
continuous) causal influence, which cannot be larger than c. The speed of discontinuous causal influence such as 
quantum nonlocality may be larger than c. 



4. Further discussions 

If space and time are indeed discrete, then the theory of relativity will be defined in discrete 
space and time. Relativity in discrete space and time is based on two postulates: (1) the principle 
of relativity; (2) the constancy of the minimum size of discrete spacetime, which states that the 

minimum time interval UT  and the minimum length UL  are invariant in all inertial frames. The 

theory can be considered as a more complete theory of relativity without light. According to the 
above analysis, special relativity can be derived from the theory of relativity in discrete space and 
time, as the constancy of the minimum size of discrete spacetime can lead to the constancy of the 

speed of light UU TLc /≡ . In this meaning, Galileo’s relativity is a theory of relativity in 

continuous space and time, while Einstein’s relativity is a theory of relativity in discrete space and 
time.  

It should be noted that some variants of relativity in discrete spacetime has already appeared 
in the research of quantum gravity (see Hagar 2009 for a general discussion). For example, doubly 
special relativity assumes two invariant scales, the speed of light c and a minimum length λ 
(Amelino-Camelia 2000, 2004; Kowalski-Glikman 2005), while triply special relativity assumes 
three invariant scales, the speed of light c, a mass κ and a length R (Kowalski-Glikman and 
Smolin 2004). In these theories, the classical Minkowski spacetime is replaced by a quantum 
spacetime, such as κ-Minkowski noncommutative spacetime etc. Although these theories still have 
problems (e.g. energy-momentum conservation problem and composition problem) due to their 
extreme nonlinearity (Amelino-Camelia 2004), they may be some in-between points along the 
road to a complete theory of quantum gravity (Amelino-Camelia and Smolin 2009). Moreover, if 
the constancy of the speed of light is really a result of the discreteness of space and time, then it 
should not be an independent assumption, while a minimum time interval, together with a 
minimum length, should be the only two invariant scales in a fundamental theory. 
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