Die folgende Grafik veranschaulicht stark übertrieben, wie sich ein Balken unter Last verbiegt. Dabei liegt der Balken an beiden Enden auf einer Unterlage auf und die Belastung greift genau in der Mitte an. Mit dem schwarzen Regler kann die Stelle gewählt werden, an welcher der Schmiegekreis berechnet und angezeigt wird.
Die folgende Formel beschreibt, wie weit sich der Balken an einer bestimmten Position x unter der Last F nach unten verbiegt.
(1) |
| |||||||||||||||
wobei' |
|
Die erste und zweite Ableitung der Funktione (1) brauchen wir zur Berechnung des Schmiegekreises:
(2) |
(3) |
Dies können wir nun in die Formeln für Krümmungskreise an Funktionen einsetzen:
(4) |
| |||||||||
(5) |
| |||||||||
(6) |
| |||||||||
wobei' |
|
Nach einsetzen der Formeln (1) bis (3) erhalten wir:
(7) |
|
(8) |
|
(9) |
|
Wenn die Kraft F nach unten zeigt, muss ein negativer Wert verwendet werden.
Es ist praktischer, zuerst die Werte mit den Formeln (1) bis (3) auszurechnen und diese dann in die Kreisformeln (4) bis (6) einzusetzen, als mit den ungetümen Formeln (7) bis (9) zu arbeiten.
Wenn nur der Radius in der Mitte des Balkens gesucht ist, kann man x = L / 2 setzen und erhält:
(10) |
|
F: Auflagekraft in der Mitte des Balkens. Positive Werte zeigen nach unten.
L: Länge des Balkens.
E: Das Elastizitätsmodul ist ein Materialkennwert, der den Zusammenhang zwischen Spannung und Dehnung bei der Verformung eines festen Körpers bei linear-elastischem Verhalten beschreibt.
I: Das Flächenträgheitsmoment ist eine geometrische Grösse, die aus dem Balkenquerschnitt und Profil berechnet wird.
x: Position, an der die Auslenkung des Balkens und der Schmiegekreis berechnet werden soll.
ymax: Auslenkung in der Mitte des Balkens, dort wo die Kraft F wirkt. Hier ist die Auslenkung maximal.
Rmin: Radius des Schmiegekreises in der Mitte des Balkens. Hier ist der Radius am kleinsten. Wenn der Radius unendlich wird, wird NaN angezeigt.
y(x): Auslenkung an der Stelle x des Balkens.
R(x): Radius des Schmiegekreises an der Stelle x des Balkens.
Zx(x): X-Position des Zentrums des Schmiegekreises.
Zy(x): Y-Position des Zentrums des Schmiegekreises.
Super gemacht ... genau das brauche ich.
Danke ^^
P.S. die Werte stimmen auch !!