# Advanced Earth Curvature Calculator

Friday, August 31, 2018 - 17:54 | Author: wabis | Topics: FlatEarth, Calculator, Knowlegde, Geometry

Use this calculator to calculate and visualize what we can see of a target of a certain size and distance from any observer altitude, taking refraction into account. You can compare the results between flat earth and globe earth. Many more values are calculated and you can customize and store the settings.

Link to here: walter.bislins.ch/CurveCalc

• Basics
• View
• Target 1
• Target 2
• Refraction⇒
• Std
• 0
• Units
• Save/Restore
• Reset All

Please read the paragraph on Refraction to get familiar with this panel.

Use this Formular to convert between different lengh units. You can Copy/Paste the results into input fields in the other Forms.

Use Get App Url to get an URL containing the current App State. Click Set App State oder copy the URL into any browser address field to go to this page and display the current App State.

Curvature Calculator showing Angles
Curvature Calculator showing No Refraction
Curvature Calculator showing Refraction
• Angles
• No Refraction
• Refraction

## Parameter Descriptions

Note: Values marked with a * are not dependent on Refraction in reality. The marked values show the apparent values if refraction is not zero. So to display the real values, set Refraction = 0. This is true for all Horizon Data as well.

### Basic Panel

Obsever Height: Height of the observer above sea level.

Target Distance: Distance from observer to target along the surface.

Target Size: Height of the target from sea level to the top of the target.

Refraction: Refraction Coefficient k. See Panel Refraction for more parameters. If you click on Std then standard refraction is calculated according to the observer height and standard atmospheric conditions. For show k is calculated see Refraction-Coefficient k.

Zoom, View∠: Zoom factor f = focal length in 35 mm equivalent units or viewing angle can be used to magnify the image. This two parameters are linked by the following equation (see Angle of view):

 (1)

### Nearest Target Data Panel

In this panel some calculated object data is displayed. If multiple objects are selected, the data for the nearest object is displayed.

Visible, Hidden: how much of the object size is hidden behind the horizon and how much is visible.

Angular Size, Angular Visible, Angular Hidden: like above but in angular size. The angular size is arctan( size / distance ) in degrees.

Refraction Angle: How much of the object is lifted due to refraction expressed as an angular size. See Refraction-Angle ρ how this angle is calculated.

Lift Absolute: absolute amount of apparent lift of the object with respect to eye level due to refraction.

Relative to Horizon: amount of apparent lift of the object with respect to the horizon due to refraction. The horizon appears lifted with respect to eye level by refraction too. If an object lies behind the horizon, its lift relative to the horizon is smaller than the absolute lift of the object with respect to eye level.

Target Top Angle, Target Top Angle FE: Angle α between target top and eye level for globe and flat earth (FE) respectively. The angle is positive if the target top is above eye level. Some theodolites measure a so called zenith angle ζ. The zenith angle is the angle between the vertical up and the target top. The correlation between this angles is α = 90° − ζ.

Angular Distance θ, Tilt θ: is the angle between the observer, the center of the earth and the nearest target. This angle is used in some Drop calculators, as the Drop x is:

(2)
where'
 $x$ ' =' 'drop from the surface level $R$ ' =' 'radius of the earth $\theta$ ' =' 'angle between observer, the center of the earth and the target

Note that $\theta$ is the same angle as the Tilt of the target object.

Drop: is the amount the surface at the target has dropped from the tangent plane at the surface of the observer. This amount depends on the surface distance between observer and target. This distance is dependent on the Target Distance and the Side Pos of the target via Pythagoras.

Bulge Height: is the maximal amount the surface appears to bulge up from the direct line through the earth from the surface at the observer and the surface at the target. This distance is dependent on the Target Distance and the Side Pos of the target via Pythagoras. Note, because the surface bends down in every direction on the globe, the bulge is always lower than the plane tangential at the surface of observer.

Distance: is the distance along the surface from the base of the observer to the base of the target. It is dependent on the Target Distance and the Side Pos of the target via Pythagoras.

### Horizon Data Panel

Dist on Surf: is the distance of the horizon line from the base of the observer along the surface.

Dip Angle: is the angle between the horizon line and the eye level line as measured at the observer.

Dist from Eye: is the line of sight distance of the horizon line from the observer.

Dist on Eye-Lvl: is the distance of the horizon measured on the eye level plane.

Drop from Surf: is the drop of the horizon line as measured down from the tangential plane with origin at the surface of the obsever.

Drop from Eye-Lvl: is the drop of the horizon line as measured down from the tangential plane with origin at the observer height. Drop from EyeLvl = Drop from Surf + Height.

Frame Width: Is the width of the frame as measured with a scale at the center of the horizon. This amount depends on the distance of the horizon and the viewing angle or focal length. Compare with Left-Right Width.

Grid Spacing: is the distance between the grid lines of the globe model.

Left-Right Width specifies the horizontal distance between the 2 points where the curved horizon meets the border of the frame. The line between the 2 points passes through the earth. The distance of the line between this 2 points is smaller than the distance to the center of the horizon Dist from Eye.

Left-Right Drop (Angle) are the apparent drop height and angle respectively from the horizon tangent to the line between the 2 points where the curved horizon meets the border of the frame. The drop height is calculated from the drop angle using the distance to the center of the horizon Dist from Eye.

For a derivation of how Left-Right values are calculated see Calculating left-right Horizon Drop.

Radius Earth: is the radius of the earth used for all calculations. This value can be changed.

## Exact Equations for the Hidden Height

How much of an object is hidden behind the curvature of the earth, the so called hidden height hh, depends on the distance of the object from the observer and from the height of the observers eye above the surface hO. The distance can be expressed as the line of sight d to the object, tangent to the horizon, or as the arc length s along the surface of the earth between observer and target.

Note: To calculate the hidden height you must not use the famous equation 8 inches per miles squared! This equation is an approximation to calculate the drop of the earth surface from a tangent line on the surface at the observer. It calculates not the hidden part of an object.

Depending on whether you know the line of sight distance d or the distance along the surface s the following equations calculate the hidden height exactly:

(3)
(4)
where'
 $h_\mathrm{h}$ ' =' 'hidden height $d$ ' =' 'line of sight distance between observer and target, tangential to the surface of the globe $s$ ' =' 'distance between observer and target along the surface of the globe $h_\mathrm{O}$ ' =' 'eye height of the observer measured from the surface of the globe $R$ ' =' '6371 km = radius of the earth without refraction; 7433 km = radius to use for standard refraction 7/6 Rearth; 7681 km = radius for standard refraction k = 0.17 (sea level)

The same equations can be used to calculate the hidden height with and without refraction. You simply have to choose the corresponding value for R. Because under standard refraction the earth looks less curved, you can use a bigger radius for the earth than it is in reality. For standard refraction 7/6 · Rearth use R = 7433 km. For standard refraction k = 0.17 use R = 7681 km.

There are multiple slightly different values for standard refraction in use. Near the ground the bigger value is more accurate. For higher altitudes the smaller value is more accurate. If you press the button Std the App calculates refraction depending on the observer altitude. Near sea level refraction is about k = 0.17.

The hidden height equations are only valid if the object lies behind the horizon. That is if the distance to the horizon dH or sH is less than the distance to the target d or s.

The exact distances to the horizon can be calculated with the following equations:

(5)
(6)
where'
 $d_\mathrm{H}$ ' =' 'line of sight distance to the horizon $s_\mathrm{H}$ ' =' 'distance to the horizon along the surface of the globe $h_\mathrm{O}$ ' =' 'eye height of the observer measured from the surface of the globe $R$ ' =' '6371 km = radius of the earth without refraction; 7433 km = radius to use for standard refraction 7/6 Rearth; 7681 km = radius for standard refraction k = 0.17 (sea level)

## Approximation Equations for the Hidden Height

If the observer height hO is much smaller than the radius of the earth R, the Exact Equations for the Hidden Height can be simplified by the following approximation:

(7)
for

$h_\mathrm{O} \ll R$

where'
 $h_\mathrm{h}$ ' =' 'hidden height $h_\mathrm{O}$ ' =' 'eye height of the observer measured from the surface of the globe $d$ ' =' 'distance between observer and target, line of sight or along the surface $R$ ' =' '6371 km = radius of the earth without refraction; 7433 km = radius to use for standard refraction 7/6 Rearth; 7681 km = radius for standard refraction k = 0.17 (sea level)

Note: for observer height much less than the radius of the earth, the line of sight distance d and the surface distance s are identical for all practical purposes. So the equation above holds for both cases.

The distance to the horizon can also be approximated by the following equation:

(8)
where'
 $d_\mathrm{H}$ ' =' 'distance to the horizon $h_\mathrm{O}$ ' =' 'eye height of the observer measured from the surface of the globe $R$ ' =' '6371 km = radius of the earth without refraction; 7433 km = radius to use for standard refraction 7/6 Rearth; 7681 km = radius for standard refraction k = 0.17 (sea level)

Conclusion: For all practical purposes while the observer is within the troposphere, so that the observer height hO is much less than the radius of the earth R, you can use the approximation equations. In this case for the distance between observer and target you can use the line of sight or the distance along the surface. They are practically identical.

## Apparent Horizon Radius

How much the horizon drops at each end of the image depends on the focal length (zoom) of the camera. The curve of the horizon is barely noticable if the viewing angle is narrow (high zoom value). Due to perspective distortions, if we are not thousands of kilometers away from earth, the apparent curve of the horizon is only approximately a circular arc. This gets obvious on very wide angle lenses beyond a viewing angle of 70°. But at the center of each image the apparent radius of the horizon is exactly the refracted radius of the earth (about 7/6 R for standard refraction). The reason is because we are looking tangential to a great circle passing through the horizon point from left to right.

Why does the curvature appear different from different altitudes? Because as we increase the observer altitude the horizon distance gets bigger. Due to perspective, everything at the horizon appears smaller. This includes the radius of the earth at the horizon, which is the apparent radius mentioned here. So although the curvature of the horizon is always the refracted R, it appears different due to perspective and the distance to the horizon.

### Link to here

• walter.bislins.ch/CurveCalc

### Resources

 About Walter Bislin (wabis) Rights Public Domain
 More Page Infos / Sitemap Created Friday, August 31, 2018
 Scroll to Top of Page Changed Sunday, May 2, 2021